Étale groupoids and their quantales
نویسنده
چکیده
We establish a close and previously unknown relation between quantales and groupoids, in terms of which the notion of étale groupoid is subsumed in a natural way by that of quantale. In particular, to each étale groupoid, either localic or topological, there is associated a unital involutive quantale. We obtain a bijective correspondence between localic étale groupoids and their quantales, which are given a rather simple characterization and are here called inverse quantal frames. We show that the category of inverse quantal frames is equivalent to the category of complete and infinitely distributive inverse monoids, and as a consequence we obtain a correspondence between these and localic étale groupoids that generalizes more classical results concerning inverse semigroups and topological étale groupoids. This generalization is entirely algebraic and it is valid in an arbitrary topos. As a consequence of these results we see that a localic groupoid is étale if and only if its sublocale of units is open and its multiplication map is semiopen, and an analogue of this holds for topological groupoids. In practice we are provided with new tools for constructing localic and topological étale groupoids, as well as inverse semigroups, for instance via presentations of quantales by generators and relations. The characterization of inverse quantal frames is to a large extent based on a new quantale operation, here called a support, whose properties are thoroughly investigated, and which may be of independent interest.
منابع مشابه
Renault’s Equivalence Theorem for C∗-Algebras of Étale Groupoids
The purpose of this paper is to prove directly that if two locally compact Hausdorff étale groupoids are Morita equivalent, then their reduced groupoid C∗-algebras are Morita equivalent.
متن کاملTopological Groupoid Quantales
We associate a canonical unital involutive quantale to a topological groupoid. When the groupoid is also étale, this association is compatible with but independent from the theory of localic étale groupoids and their quantales [19] of P. Resende. As a motivating example, we describe the connection between the quantale and the C∗-algebra that both classify Penrose tilings, which was left as an o...
متن کاملLocal index theory over étale groupoids
We give a superconnection proof of Connes’ index theorem for proper cocompact actions of étale groupoids. This includes Connes’ general foliation index theorem for foliations with Hausdor¤ holonomy groupoid.
متن کامل